American Society for Clinical Pathology

Fifteen Things Physicians and Patients Should Question

Released February 21, 2013 (1-5), February 3, 2015 (6-10) and September 14, 2016 (11-15)

  1. 1

    Don’t perform population based screening for 25-OH-Vitamin D deficiency.

    Vitamin D deficiency is common in many populations, particularly in patients at higher latitudes, during winter months and in those with limited sun exposure. Over the counter Vitamin D supplements and increased summer sun exposure are sufficient for most otherwise healthy patients. Laboratory testing is appropriate in higher risk patients when results will be used to institute more aggressive therapy (e.g., osteoporosis, chronic kidney disease, malabsorption, some infections, obese individuals).

  2. 2

    Don’t perform low-risk HPV testing.

    National guidelines provide for HPV testing in patients with certain abnormal Pap smears and in other select clinical indications. The presence of high risk HPV leads to more frequent examination or more aggressive investigation (e.g., colposcopy and biopsy). There is no medical indication for low risk HPV testing (HPV types that cause genital warts or very minor cell changes on the cervix) because the infection is not associated with disease progression and there is no treatment or therapy change indicated when low risk HPV is identified.

  3. 3

    Avoid routine preoperative testing for low risk surgeries without a clinical indication.

    Most preoperative tests (typically a complete blood count, Prothrombin Time and Partial Prothomboplastin Time, basic metabolic panel and urinalysis) performed on elective surgical patients are normal. Findings influence management in under 3% of patients tested. In almost all cases, no adverse outcomes are observed when clinically stable patients undergo elective surgery, irrespective of whether an abnormal test is identified. Preoperative testing is appropriate in symptomatic patients and those with risks factors for which diagnostic testing can provide clarification of patient surgical risk.

  4. 4

    Only order Methylated Septin 9 (SEPT9) to screen for colon cancer on patients for whom conventional diagnostics are not possible.

    Methylated Septin 9 (SEPT9) is a plasma test to screen patients for colorectal cancer. Its sensitivity and specificity are similar to commonly ordered stool guaiac or fecal immune tests. It offers an advantage over no testing in patients that refuse these tests or who, despite aggressive counseling, decline to have recommended colonoscopy. The test should not be considered as an alternative to standard diagnostic procedures when those procedures are possible.

  5. 5

    Don’t use bleeding time test to guide patient care.

    The bleeding time test is an older assay that has been replaced by alternative coagulation tests. The relationship between the bleeding time test and the risk of a patient’s actually bleeding has not been established. Further, the test leaves a scar on the forearm. There are other reliable tests of coagulation available to evaluate the risks of bleeding in appropriate patient populations.

  6. 6

    Don’t order an erythrocyte sedimentation rate (ESR) to look for inflammation in patients with undiagnosed conditions. Order a C-reactive protein (CRP) to detect acute phase inflammation.

    CRP is a more sensitive and specific reflection of the acute phase of inflammation than is the ESR. In the first 24 hours of a disease process, the CRP will be elevated, while the ESR may be normal. If the source of inflammation is removed, the CRP will return to normal within a day or so, while the ESR will remain elevated for several days until excess fibrinogen is removed from the serum.

  7. 7

    Don’t test vitamin K levels unless the patient has an abnormal international normalized ratio (INR) and does not respond to vitamin K therapy.

    Measurements of the level of vitamin K in the blood are rarely used to determine if a deficiency exists. Vitamin K deficiency is very rare, but when it does occur, a prolonged prothrombin time (PT) and elevated INR will result. A diagnosis is typically made by observing the PT correction following administration of vitamin K, plus the presence of clinical risk factors for vitamin K deficiency.

  8. 8

    Don’t prescribe testosterone therapy unless there is laboratory evidence of testosterone deficiency.

    With the increased incidence of obesity and diabetes, there may be increasing numbers of older men with lower testosterone levels that do not fully meet diagnostic or symptomatic criteria for hypogonadism. Current clinical guidelines recommend making a diagnosis of androgen deficiency only in men with consistent symptoms and signs coupled with unequivocally low serum testosterone levels. Serum testosterone should only be ordered on patients exhibiting signs and symptoms of androgen deficiency.

  9. 9

    Don’t test for myoglobin or CK-MB in the diagnosis of acute myocardial infarction (AMI). Instead, use troponin I or T.

    Unlike CK-MB and myoglobin, the release of troponin I or T is specific to cardiac injury.

    Troponin is released before CK-MB and appears in the blood as early as, if not earlier than, myoglobin after AMI. Approximately 30% of patients experiencing chest discomfort at rest with a normal CK-MB will be diagnosed with AMI when evaluated using troponins. Single-point troponin measurements equate to infarct size for the determination of the AMI severity. Accordingly, there is much support for relying solely on troponin and discontinuing the use of CK-MB and other markers.

  10. 10

    Don’t order multiple tests in the initial evaluation of a patient with suspected thyroid disease. Order thyroid-stimulating hormone (TSH), and if abnormal, follow up with additional evaluation or treatment depending on the findings.

    The TSH test can detect subclinical thyroid disease in patients without symptoms of thyroid dysfunction. A TSH value within the reference interval excludes the majority of cases of primary overt thyroid disease. If the TSH is abnormal, confirm the diagnosis with free thyroxine (T4).

  11. 11

    Do not routinely perform sentinel lymph node biopsy or other diagnostic tests for the evaluation of early, thin melanoma because these tests do not improve survival.

    Sentinel lymph node biopsy (SLNB) is a minimally invasive staging procedure developed to identify patients with subclinical nodal metastases at higher risk of occurrence, who could be candidates for complete lymph node dissection or adjuvant systemic therapy. The National Comprehensive Cancer Network (NCCN) Melanoma Panel does not recommend SLNB for patients with in situ melanoma (stage 0). In general, the panel does not recommend SLNB for Stage 1A or 1B lesions that are very thin (0.75mm or less). In the rare event that a conventional high-risk feature is present, the decision about SLNB should be left to the patient and the treating physician.

  12. 12

    Do not routinely order expanded lipid panels (particle sizing, nuclear magnetic resonance) as screening tests for cardiovascular disease.

    A standard lipid profile includes total cholesterol, low-density lipoprotein (LDL) cholesterol, high-density lipoprotein (HDL) cholesterol, and triglycerides. These lipids are carried within lipoprotein particles that are heterogeneous in size, density, charge, core lipid composition, specific apolipoproteins, and function. A variety of lipoprotein assays have been developed that subfractionate lipoprotein particles according to some of these properties such as size, density or charge. However, selection of these lipoprotein assays for improving assessment of risk of cardiovascular disease and guiding lipid-lowering therapies should be on an individualized basis for intermediate to high-risk patients only. They are not indicated for population based cardiovascular risk screening.

    Research evaluating the frequency and correlates of repeat lipid testing in patients with CHD demonstrates that individuals with LDL-C levels of less than 100mg/dl had no additional benefit from the intensification of lipid-lowering therapies. Understanding the frequency and correlates of redundant lipid testing could identify areas for quality improvement initiatives aimed at improving the efficiency of cholesterol care in patients with coronary heart disease (CHD).

    Millions of U.S. adults are at increased ASCVD risk—some because they have had an ASCVD event, others because of ASCVD risk factors. Adherence to healthy lifestyle behaviors, control of blood pressure and diabetes, and avoidance of smoking is recommended for all adults. Statin therapy should be used to reduce ASCVD risk in individuals likely to have a clear net benefit (those with clinical ASCVD) or in primary prevention for adults with LDL-C levels over 190 mg/dL, those aged 40 to 75 years with diabetes, and those with a 10-year ASCVD risk 7.5% without diabetes. A clinician–patient discussion that considers potential ASCVD risk reduction, adverse effects, and patient preferences is needed to decide whether to initiate statin therapy, especially in lower-risk primary prevention.

  13. 13

    Do not test for amylase in cases of suspected acute pancreatitis. Instead, test for lipase.

    Amylase and lipase are digestive enzymes normally released from the acinar cells of the exocrine pancreas into the duodenum. Following injury to the pancreas, these enzymes are released into the circulation. While amylase is cleared in the urine, lipase is reabsorbed back into the circulation. In cases of acute pancreatitis, serum activity for both enzymes is greatly increased.

    Serum lipase is now the preferred test due to its improved sensitivity, particularly in alcohol-induced pancreatitis. Its prolonged elevation creates a wider diagnostic window than amylase. In acute pancreatitis, amylase can rise rapidly within 3–6 hours of the onset of symptoms and may remain elevated for up to five days. Lipase, however, usually peaks at 24 hours with serum concentrations remaining elevated for 8–14 days. This means it is far more useful than amylase when the clinical presentation or testing has been delayed for more than 24 hours.

    Current guidelines and recommendations indicate that lipase should be preferred over total and pancreatic amylase for the initial diagnosis of acute pancreatitis and that the assessment should not be repeated over time to monitor disease prognosis. Repeat testing should be considered only when the patient has signs and symptoms of persisting pancreatic or peripancreatic inflammation, blockage of the pancreatic duct or development of a pseudocyst. Testing both amylase and lipase is generally discouraged because it increases costs while only marginally improving diagnostic efficiency compared to either marker alone.

  14. 14

    Do not request serology for H. pylori. Use the stool antigen or breath tests instead.

    Serologic evaluation of patients to determine the presence/absence of Helicobacter pylori (H. pylori) infection is no longer considered clinically useful. Alternative noninvasive testing methods (e.g., the urea breath test and stool antigen test) exist for detecting the presence of the bacteria and have demonstrated higher clinical utility, sensitivity, and specificity. Additionally, both the American College of Gastroenterology and the American Gastroenterology Association recommend either the breath or stool antigen tests as the preferred testing modalities for active H. pylori infection. Finally, several laboratories have dropped the serological test from their menus, and many insurance providers are no longer reimbursing patients for serologic testing.

  15. 15

    Do not perform fluorescence in situ hybridization (FISH) for myelodysplastic syndrome (MDS)-related abnormalities on bone marrow samples obtained for cytopenias when an adequate conventional karyotype is obtained.

    The presence of certain clonal abnormalities in the bone marrow or blood of patients with cytopenia(s) establishes or strongly supports the diagnosis of MDS, in some cases even in the absence of diagnostic morphologic findings. MDS FISH panels typically employ probes for four or more genetic loci, making this an expensive test. Multiple studies have demonstrated the added value of MDS FISH on bone marrow is extremely low when a satisfactory karyotype is obtained (20 interpretable metaphases). MDS FISH can be performed post hoc in the event of an unsatisfactory karyotype.

These items are provided solely for informational purposes and are not intended as a substitute for consultation with a medical professional. Patients with any specific questions about the items on this list or their individual situation should consult their physician.

Founded in 1922 in Chicago, the American Society for Clinical Pathology (ASCP) is a medical professional society with more than 100,000 member board-certified anatomic and clinical pathologists, residents and fellows, laboratory professionals, and students. ASCP provides excellence in education, certification, and advocacy on behalf of patients, pathologists, and laboratory professionals.

For more information, visit

How This List Was Created

1-5: The American Society for Clinical Pathology (ASCP) list was developed under the leadership of the chair of ASCP’s Institute Advisory Committee and Past President of ASCP. Subject matter and test utilization experts across the fields of pathology and laboratory medicine were included in this process for their expertise and guidance. The review panel examined hundreds of options based on both the practice of pathology and evidence available through an extensive review of the literature. The laboratory tests targeted in our recommendations were selected because they are tests that are performed frequently; there is evidence that the test either offers no benefit or is harmful; use of the test is costly and it does not provide higher quality care; and, eliminating it or changing to another test is within the control of the clinician. The final list is not exhaustive (many other tests/procedures were also identified and were also worthy of consideration), but the recommendations, if instituted, would result in higher quality care, lower costs, and more effective use of our laboratory resources and personnel.

6–10: The American Society for Clinical Pathology (ASCP) list of recommendations was developed under the leadership of the ASCP Choosing Wisely Ad Hoc Committee. This committee is chaired by an ASCP Past President and is comprised of subject matter and test utilization experts across the fields of pathology and laboratory medicine. The committee considered an initial list of possible recommendations compiled as the result of a survey administered to Society members serving on ASCP’s many commissions, committees and councils. The laboratory tests targeted in our recommendations were selected because they are tests that are performed frequently; there is evidence that the test either offers no benefit or is harmful; use of the test is costly and it does not provide higher quality care; and eliminating it or changing to another test is within the control of the clinician. Implementation of these recommendations will result in higher quality care, lower costs and a more effective use of our laboratory resources and personnel.

11–15: The American Society for Clinical Pathology (ASCP) list of recommendations was developed under the leadership of the ASCP Effective Test Utilization Subcommittee. This committee is chaired by an ASCP Past President and comprises subject matter and test utilization experts across the fields of pathology and laboratory medicine. The committee considered an initial list of possible recommendations compiled as the result of a survey administered to Society members serving on ASCP’s many commissions, committees, and councils. The laboratory tests targeted in our recommendations were selected because they are tests that are performed frequently; there is evidence that the test either offers no benefit or is harmful (either entirely or in specific clinical situations); use of the test is costly and it does not provide higher quality care; and eliminating it or changing to another test is within the control of the clinician. Implementation of these recommendations will result in higher quality care, lower costs, and a more effective use of our laboratory resources and personnel.


ASCP’s disclosure and conflict of interest policy can be found at


  1. Sattar N, Welsh P, Panarelli M, Forouchi NG. Increasing requests for vitamin D measurement: Costly, confusing, and without credibility. Lancet [Internet]. 2012 Jan 14 [cited 2012 Oct 12];379:95-96.

    Bilinski K, Boyages S. The rising cost of vitamin D testing in Australia: time to establish guidelines for testing. Med J Aust [Internet]. 2012 Jul 16 [cited 2012 Oct 12];197 (2):90.

    Lu CM. Pathology consultation on vitamin D testing: Clinical indications for 25(OH) vitamin D measurement [Letter to the editor]. Am J Clin Pathol [Internet]. 2012 May [cited 2012 Oct 12];137:831.

    Holick M, Binkely N, Bischoll-Ferrari H, Gordon CM, Hanley DA, Heaney RP, Murad MH, Weaver CM; Endocrine Society. Evaluation, treatment, and prevention of vitamin D deficiency: An Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab [Internet]. 2011 Jul [cited 2012 Oct 12];96(7):1911-1930.

  2. Lee JW, Berkowitz Z, Saraiya M. Low-risk human papillomavirus testing and other non recommended human papillomavirus testing practices among U.S. health care providers. Obstet Gynecol. 2011 Jul;118(1):4-13.

    Saslow D, Solomon D, Lawson HW, Killackey M, Kulasingam SL, Cain J, Garcia FA, Moriarty AT, Waxman AG, Wilbur DC, Wentzensen N, Downs LS Jr, Spitzer M, Moscicki AB, Franco EL, Stoler MH, Schiffman M, Castle PE, Myers ER; ACS-ASCCP-ASCP Cervical Cancer Guideline Committee. American Cancer Society, American Society for Colposcopy and Cervical Pathology, and American Society for Clinical Pathology Screening Guidelines for the Prevention and early Detection of Cervical Cancer. Am J Clin Pathol [Internet]. 2012 May-Jun [cited 2012 Oct 12];137:516-542.

    Zhao C, Chen X, Onisko A, Kanbour A, Austin RM. Follow-up outcomes for a large cohort of U.S. women with negative imaged liquid-based cytology findings and positive high risk human papillomavirus test results. Gynecol Oncol [Internet]. 2011 Aug [cited 2012 Oct 12];122:291–296.

    American Society for Colposcopy and Cervical Pathology. Descriptions of new FDA-approved HPV DNA tests. HPV Genotyping Clinical Update.[Internet]. Frederick (MD): American Society for Colposcopy and Cervical Pathology. 2009. [Cited 2012 Oct 12]. Available from:

  3. Keay L, Lindsley K, Tielsch J, Katz J, Schein O. Routine preoperative medical testing for cataract surgery. Cochrane Database of Systematic Reviews. 2012, Issue 3. Art. No.: CD007293. DOI: 10.1002/14651858.CD007293.pub3.

    Katz R, Dexter F, Rosenfeld K, Wolfe L, Redmond V, Agarwal D, Salik I, Goldsteen K, Goodman M, Glass PS. Survey study of anesthesiologists’ and surgeons’ ordering of unnecessary preoperative laboratory tests. Anesth Analg. 2011 Jan;112(1).

    Munro J, Booth A, Nicholl J. Routine preoperative testing: A systematic review of the evidence. Health Technol Assessmen. 1997;1(12).

    Reynolds TM. National Institute for Health and Clinical Excellence guidelines on preoperative tests: The use of routine preoperative tests for elective surgery. Ann Clin Biochem [Internet]. 2006 Jan [cited 2012 Oct 12];43:13-16.

    Capdenat Saint-Martin E, Michel P, Raymond JM Iskandar H, Chevalier C, Petitpierre MN, Daubech L, Amouretti M, Maurette P. Description of local adaptation of national guidelines and of active feedback for rationalizing preoperative screening in patients at low risk from anaesthetics in a French university hospital. Qual Health Care [Internet]. 1998 Mar [cited 2012 Oct 12];7:5-11.

  4. Rösch T, Church T, Osborn N, Wandell M, Lofton-Day C, Mongin S, Blumenstein BA, Allen JI, Snover D, Day R, Ransohoff DF. Prospective clinical validation of an assay for methylated SEPT9 DNA for colorectal cancer screening in plasma of average risk men and women over the age of 50. Gut. 2010;59(suppl III):A307.

    Ahlquist DA, Taylor WR, Mahoney DW, Zou H, Domanico M, Thibodeau SN, Boardman LA, Berger BM, Lidgard GP. The stool DNA test is more accurate than the plasma septin 9 test in detecting colorectal neoplasia. Clin Gastroenterol Hepatol. [Internet]. 2012 Mar [cited 2012 Oct 12];10(3):272-7.

  5. Lehman CM, Blaylock RC, Alexander DP, Rodges GM. Discontinuation of the bleeding time test without detectable adverse clinical impact. Clin Chem [Internet]. 2001;47(7) [cited 2012 Oct 12]:1204-1211.

    Peterson P, Hayes TE, Arkin CF, Bovill EG, Fairweather RB, Rock WA Jr, Triplett DA, Brandt JT. The preoperative bleeding time test lacks clinical benefit. Arch Surg [Internet]. 1998 Feb [cited 2012 Oct 20];133(2):134-139.

    Lind SE. The bleeding time does not predict surgical bleeding. Blood [Internet]. 1991 Jun [cited 2012 Oct 20]; 77(12):2547-52.

  6. Crowson CS, Rahman MU, Matteson EL. Which measure of inflammation to use? A comparison of erythrocyte sedimentation rate and C-reactive protein measurements from randomized clinical trials of golimumab in rheumatoid arthritis. J Rheumatol. 2009 Aug;36 (8):1606-10.

    Wu AH, Lewandrowski K, Gronowski AM, Grenache DG, Sokoll LJ, Magnani B. Antiquated tests within the clinical pathology laboratory. Am J Manag Care. 2010 Sep;16(9):e220-7.

    Black S, Kushner I, Samols D. C-reactive protein. J Biol Chem. 2004 Nov 19:279(47):48487-90.

    Henriquez-Camacho C, Losa J. Biomarkers for sepsis. Biomed Res Int. 2014;2014:547818.

    Lelubre C, Anselin S, Zouaoui Boudjeltia K, Biston P, Piagnerelli M. Interpretation of C-reactive protein concentrations in critically ill patients. Biomed Res Int. 2013;2013:124021.

  7. Suttie JW. Vitamin K. In: Machlin L, ed. Handbook of Vitamins. New York( NY): Marcel Dekker; 1984:147.

    Van Winckel M, De Bruyne R, Van De Velde S, Van Biervliet S. Vitamin K, an update for the paediatrician. Eur J Pediatr. 2009 Feb;168(2):127-34.

    Shearer MJ. Vitamin K deficiency bleeding (VKDB) in early infancy. Blood Rev. 2009 Mar;23(2):49-59.

    Van Hasselt PM, de Koning TJ, Kvist N, de Vries E, Lundin CR, Berger R, Kimpen JL, Houwen RH, Jorgensen MH, Verkade HJ; Netherlands Study Group for Biliary Atresia Registry. Prevention of vitamin K deficiency bleeding in breastfed infants: lessons from the Dutch and Danish biliary atresia registries. Pediatrics. 2008 Apr;121(4):e857-63.

    Booth SL, Al Rajabi A. Determinants of vitamin K status in humans. Vitam Horm. 2008;78:1-22.

    Krasinski SD, Russell RM, Furie BC, Kriger SF, Jacques PF, Furie B. The prevalence of vitamin K deficiency in chronic gastrointestinal disorders. Am J Clin Nutr. 1985 Mar;41(3):639-43.

    Shearer MJ, Fux, Booth SL. Vitamin K nutrition, metabolism, and requirement: current concept and future research. Adv Nutr. 2012 Mar;3(2):182-95.

    Liebman HA, Furie BC, Tong MJ, Blanchard RA, Lo KJ, Lee SD, Coleman MS, Furie B. Des-gamma-carboxy (abnormal) prothrombin as a serum marker of primary hepatocellular carcinoma. N Engl J Med. 1984 May 31;310(22):1427-31.

  8. Layton JB, Li D, Meier CR, Sharpless JL, Stürmer T, Jick SS, Brookhart MA. Testosterone lab testing and initiation in the United Kingdom and the United States, 2000 to 2011. J Clin Endocrinol Metab. 2014 Mar;99(3):835-42.

    Bhasin D, Cunningham GF, Hayes FJ, Matsumoto AM, Snyder PJ, Swerdloff RS, Montori VM; Task Force, Endocrine Society. Testosterone therapy in adult men with androgen deficiency syndromes: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2010 Jun;95(6):2536-59.

    Liverman CT, Blaze DG, eds. Testosterone and aging: clinical research directions. Washington (DC): The National Academies Press; 2004.

  9. Thygesen K, Alpert JS, White HD; Joint ESC/ACCF/AHA/WHF Task Force for the Redefinition of Myocardial Infarction, Jaffe AS, Apple FS, Galvani M, Katus HA, Newby LK, Ravkilde J, Chaitman B, Clemmensen PM, Dellborg M, Hod H, Porela P, Underwood R, Bax JJ, Beller GA, Bonow R, Van der Wall EE, Bassand JP, Wijns W, Ferguson TB, Steg PG, Uretsky BF, Williams DO, Armstrong PW, Antman EM, Fox KA, Hamm CW, Ohman EM, Simoons ML, Poole-Wilson PA, Gurfinkel EP, Lopez-Sendon JL, Pais P, Mendis S, Zhu JR, Wallentin LC, Fernández-Avilés F, Fox KM, Parkhomenko AN, Priori SG, Tendera M, Voipio-Pulkki LM, Vahanian A, Camm AJ, De Caterina R, Dean V, Dickstein K, Filippatos G, Funck-Brentano C, Hellemans I, Kristensen SD, McGregor K, Sechtem U, Silber S, Tendera M, Widimsky P, Zamorano JL, Morais J, Brener S, Harrington R, Morrow D, Lim M, Martinez-Rios MA, Steinhubl S, Levine GN, Gibler WB, Goff D, Tubaro M, Dudek D, Al-Attar N. Universal definition of myocardial infarction. Circulation. 2007 Nov 27;116(22):2634-53.

    Eggers KM, Oldgren J, Nordenskjöld A, Lindahl B. Diagnostic value of serial measurement of cardiac markers in patients with chest pain: limited value of adding myoglobin to troponin I for exclusion of myocardial infarction. Am Heart J. 2004 Oct;148(4):574-81.

    Macrae AR, Kavsak PA, Lustig V, Bhargava R, Vandersluis R, Palomaki GE, Yerna MJ, Jaffe AS. Assessing the requirement for the 6-hour interval between specimens in the American Heart Association Classification of Myocardial Infarction in Epidemiology and Clinical Research Studies. Clin Chem. 2006 May;52(5):812-8.

    Kavsak PA, Macrae AR, Newman AM, Lustig V, Palomaki GE, Ko DT, Tu JV, Jaffe AS. Effects of contemporary troponin assay sensitivity on the utility of the early markers myoglobin and CKMB isoforms in evaluating patients with possible acute myocardial infarction. Clin Chem Acta. 2007 May 1;380(1-2):213-6.

    Saenger AK, Jaffe AS. Requiem for a heavyweight: the demise of the creatine kinase-MB. Circulation. 2008 Nov 18:118(21):2200-6.

    Reichlin T. Hochholzer W, Bassetti S, Steuer S, Stelzig C, Hartwiger S, Biedert S, Schaub N, Buerge C, Potocki M, Noveanu M, Breidthardt T, Twerenbold R, Winkler K, Bingisser R, Mueller C. Early diagnosis of myocardial infarction with sensitive cardiac troponin assays. N Engl J Med. 2009 Aug 27;361(9):858-67.

  10. Garber JR, Cobin RH, Gharib H, Hennessey JV, Klein I, Mechanick JI, Pessah-Pollack R, Singer PA, Woeber KA; American Association of Clinical Endocrinologists and American Thyroid Association Taskforce on Hypothyroidism in Adults. ATA/AACE guidelines for hypothyroidism in adults. Endocr Pract. 2012 Nov-Dec;18(6):988-1028.

    Dufour DR. Laboratory tests of thyroid function: uses and limitations. Endocrinol Metab Clin North Am. 2007 Sep;36(3):579-94, v.

    U.S. Preventative Services Task Force. Screening for thyroid disease: recommendation statement. Ann Intern Med. 2004 Jan 20;140(2):125-7.

  11. Bichakjian CK, Halpern AC, Johnson TM, Foote Hood A, Grichnik JM, Swetter SM, Tsao H, Barbosa VH, Chuang TY, Duvic M, Ho VC, Sober AJ, Beutner KR, Bhushan R, Smith Begolka W; American Academy of Dermatology. Guidelines of care for the management of primary cutaneous melanoma. American Academy of Dermatology. J Am Acad Dermatol. 2011 Nov;65(5):1032–47.

    American Joint Committee on Cancer. AJCC cancer staging manual. 7th ed. New York: Springer; 2010.

    National Comprehensive Cancer Network. National Comprehensive Cancer Network clinical practice guidelines in oncology (NCCN Guidelines®): melanoma. (Version 3.2015).

  12. Mark McConnell, John R. Downes, Chester B. Good. Decrease the incentives to order lipid panels. JAMA Intern Med. 2014; 174(3):473. doi:10.1001/jamainternmed,2013.12872.

    Stone NJ, Robinson JG, Lichtenstein AH, Goff DC, et al. Treatment of blood cholesterol to reduce atherosclerotic cardiovascular disease risk in adults: synopsis of the 2013 American College of Cardiology/American Heart Association Cholesterol Guideline. Ann Intern Med. 2014; 160: 339-343.

    Stone NJ, Robinson JG, Lichtenstein AH, BaireyMerz CN, et al. 2013 ACA/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report

    of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Accessed September 11, 2014.

    Sulkes D, Brown BG, Krauss RM, Segrest JP, et al. The editor’s roundtable: expanded versus standard lipid panels in assessing and managing cardiovascular risk. The American Journal of Cardiology, 15 March 2008; 101(6): 828-842.

    Virani SS, Woodard LD, Wang D, Chitwood SS, et al. Correlates of repeat lipid testing in patients with coronary heart disease. JAMA Intern Med. 2013; 12 Aug:173(15):1439-44.

  13. Basnayake C, Ratnam D. Blood test for acute pancreatitis. Aust Prescr. Aug 2015;38:128-30.

    Lankisch PG, Burchard-Reckert S, Lehnick D. Underestimation of acute pancreatitis: patients with only a small increase in amylase/lipase levels can also have or develop severe acute pancreatitis. Gut. Apr 1999;44(4):542-4.

    Lippi, G, Valentino, M, Cervellin G. Laboratory diagnosis of acute pancreatitis: in search of the Holy Grail. Crit Rev Clin Lab Sci. Jan – Feb 2012; 49(1)18-21.

    Shafget MA, Brown TV, Sharma R. Nornal lipase drug-induced pancreatitis: a novel finding. Am J Emerg Med. Mar 2015; 33(3):476.e5-6.

    Smith RC, Southwell-Keely J, Chesher D. Should serum pancreatic lipase replace serum amylase as a biomarker of acute pancreatitis? ANZ J Surg. Jun 2005;75(6):399-404.

    Yadav D, Agarwal N, Pitchumondi CS. A critical evaluation of laboratory tests in acute pancreatitis. Am J Gastroenterol. Jun 2002;97(6):1309-18.

    Viel JF, Foucault P, Bureau F, Albert A, Drosdowsky MA. Combined diagnostic value of biochemical markers in acute pancreatitis. ClinChimActa. 1990;189(2):191-198.

  14. Babak Pourakbari, Mona Ghazi, Shima Mahmoudi, Setareh Mamishi, Hossein Azhdarkosh, Mehri Najafi, Bahram Kazemi, Ali Salavati, and Akbar Mirsalehian. Diagnosis of Helicobacter pylori infection by invasive and noninvasive tests. Braz J Microbiol. 2013; 44(3): 795–798. Published online 2013 Nov 15.

    Elvira Garza-González, Guillermo Ignacio Perez-Perez, Héctor Jesús Maldonado-Garza, and Francisco Javier Bosques-Padilla. A review of Helicobacter pylori diagnosis, treatment, and methods to detect eradication. World J Gastroenterol. 2014 Feb 14; 20(6): 1438–1449. Published online 2014 Feb 14. doi: 10.3748/wjg.v20.i6.1438

    Theel ES, Johnson RD, Plumhoff E, Hanson CA: Use of the Optum Labs Data Warehouse to assess test ordering patterns for diagnosis of Helicobacter pylori infection in the United States. J Clin Microbiol 2015 Apr;53(4):1358-1360

    Wang YK, Kuo FC, Liu CJ, Wu MC, Shih HY, Wang SS, Wu JY, Kuo CH, Huang YK, Wu DC. Diagnosis of Helicobacter pylori infection: Current options and developments. World J Gastroenterol. 2015 Oct 28;21(40):11221-35. doi: 10.3748/wjg.v21.i40.11221.

    Tamadon MR, Saberi Far M, Soleimani A, Ghorbani R, Semnani V, Malek F, Malek M. Evaluation of noninvasive tests for diagnosis of Helicobacter pylori infection in hemodialysis patients. J Nephropathol. 2013 Oct;2(4):249-53. Epub 2013 Sep 1.

    Talley NJ, Ford AC. Functional Dyspepsia. The New England Journal of Medicine. 2015;373:1853-63. Published online 2015 November 5.

  15. Coleman JF, Theil KS, Tubbs RR, et al. Diagnostic yield of bone marrow and peripheral blood FISH panel testing in clinically suspected myelodysplastic syndromes and/or acute myeloid leukemia: a prospective analysis of 433 cases. American Journal of Clinical Pathology 2011;135:915-920.

    Jiang H, Xue Y, Wang Q, et al. The utility of fluorescence in situ hybridization analysis in diagnosing myelodysplastic syndromes is limited to cases with karyotype failure. Leukemia Research 2012;36:448-452.

    Pitchford CW, Hettinga AC, Reichard KK. Fluorescence in situ hybridization testing for -5/5q, -7/7q, +8, and del(20q) in primary myelodysplastic syndrome correlates with conventional cytogenetics in the setting of an adequate study. American Journal of Clinical Pathology 2010;133:260-264.

    Seegmiller AC, Wasserman A, Kim AS, et al. Limited utility of fluorescence in situ hybridization for common abnormalities of myelodysplastic syndrome at first presentation and follow-up of myeloid neoplasms. Leukemia & Lymphoma 2014;55:601-605.