Avoid routine multiple daily self-glucose monitoring in adults with stable type 2 diabetes on agents that do not cause hypoglycemia.

Once target control is achieved and the results of self-monitoring become quite predictable, there is little gained in most individuals from repeatedly confirming. There are many exceptions, such as for acute illness, when new medications are added, when weight fluctuates significantly, when A1C targets drift off course and in individuals who need monitoring to maintain targets. Self-monitoring is beneficial as long as one is learning and adjusting therapy based on the result of the monitoring.

Don’t routinely measure 1,25-dihydroxyvitamin D unless the patient has hypercalcemia or decreased kidney function.

Many practitioners become confused when ordering a vitamin D test. Because 1,25-dihydroxyvitamin D is the active form of vitamin D, many practitioners think that measuring 1,25-dihydroxyvitamin D is an accurate means to estimate vitamin D stores and test for vitamin D deficiency, which is incorrect. Current Endocrine Society guidelines recommend screening for vitamin D deficiency in individuals at risk for deficiency.

Serum levels of 1,25-dihydroxyvitamin D have little or no relationship to vitamin D stores but rather are regulated primarily by parathyroid hormone levels, which in turn are regulated by calcium and/or vitamin D. In vitamin D deficiency, 1,25-dihydroxyvitamin D levels go up, not down. Unregulated production of 1,25-dihydroxyvitamin D (i.e., sarcoidosis, granulomatous diseases) is an uncommon cause of hypercalcemia; this should be suspected if blood calcium levels are high and parathyroid hormone levels are low and confirmed by measurement of 1,25-dihydroxyvitamin D. The enzyme that activates vitamin D is produced in the kidney, so blood levels of 1,25-dihydroxyvitamin D are sometimes of interest in patients on dialysis or with end-stage kidney disease. There are few other circumstances, if any, where 1,25-dihydroxyvitamin D testing would be helpful.

Don’t routinely order a thyroid ultrasound in patients with abnormal thyroid function tests if there is no palpable abnormality of the thyroid gland.

Thyroid ultrasound is used to identify and characterize thyroid nodules. Thyroid ultrasound is not part of the routine evaluation of hypothyroidism unless the patient also has a large goiter or a lumpy thyroid. Incidentally discovered thyroid nodules are common. Overzealous use of ultrasound will frequently identify nodules that are unrelated to the abnormal thyroid function. This may divert the clinical evaluation to assess the nodules, rather than the thyroid dysfunction. Thyrotoxic patients with nodules may also benefit from imaging. For these patients, a thyroid scan, not an ultrasound, can be used to assess the possibility of focal autonomy in a thyroid nodule. In some centers assessment of thyroid artery blood flow by doppler may be used to help distinguish Graves’ disease from a destructive thyroiditis.

Don’t order a total or free T3 level when assessing levothyroxine (T4) dose in hypothyroid patients.

T4 is converted into T3 at the cellular level in virtually all organs. Intracellular T3 levels regulate pituitary secretion and blood levels of TSH, as well as the effects of thyroid hormone in multiple organs. However, T3 levels in blood are not reliable indicators of intracellular T3 concentration. Compared to patients with intact thyroid glands, patients taking T4 may have higher blood T4 and lower blood T3 levels. There is controversy as to whether a normal TSH reflects adequate intracellular T3 levels in all organs. However, even in patients taking both levothyroxine and liothyronine, there are no data suggesting that the blood level of total or free T3 correlates with a patient’s clinical response. Therefore, in most patients a normal TSH indicates a correct dose of T4.

Don’t prescribe testosterone therapy unless there is biochemical evidence of testosterone deficiency.

Many of the symptoms attributed to male hypogonadism are commonly seen in normal male aging or in the presence of comorbid conditions. Testosterone therapy has the potential for serious side effects and represents a significant expense. It is therefore important to confirm the clinical suspicion of hypogonadism with biochemical testing. Current guidelines recommend the use of a total testosterone level obtained in the morning. A low level should be confirmed on a different day, again measuring the total testosterone. In some situations, a free or bioavailable testosterone may be of additional value.

These items are provided solely for informational purposes and are not intended as a substitute for consultation with a medical professional. Patients with any specific questions about the items on this list or their individual situation should consult their physician.

Released October 16, 2013; updated July 17, 2017
How This List was Created

Members of The Endocrine Society (Society) along with representatives of the American Association of Clinical Endocrinologists (AACE) formed a joint task force to identify tests or procedures which should only be used in specific circumstances. The task force identified several items for possible inclusion. Subsequent discussions compared the evidence supporting each item, the value of the recommendation to practitioners and the potential for cost savings. Members of the Society’s Clinical Affairs Core Committee and AACE leadership also reviewed the initial list. Using the above criteria, the task force voted for their top five recommendations from the original list. The Society’s Council and AACE’s Board of Directors approved the final list for submission to the Choosing Wisely® campaign.

The Endocrine Society disclosure and conflict of interest policies can be found at www.endocrine.org.

*The American Association of Clinical Endocrinologists withdrew from the Choosing Wisely® campaign on May 26, 2015.

Sources


For more information or to see other lists of Five Things Physicians and Patients Should Questions, visit www.choosingwisely.org.